
Lift Weight and Produce Electricity with the Power of Wind

with Samantha Bonelli Physical Science Category Specialist

today's theme

overview

- The materials contained in this kit allow students to investigate force, revolutions per minute, torque, work, power, circuits and energy.
- Using hands-on investigations, students will learn and discover how the design of blades affects performance and function, and how an alternator affects the electrical energy created by a wind lift and/or wind turbine.
- Today's kit is aligned to the current national standards as seen in your handouts

"all about the blades"

- Students will channel their inner-engineer and construct a balsawood windmill that produces the most power.
- Since everyone's turbine will have the same structure, student's creativity will be put to the test to create the windmill blades!
- How will YOU design the ideal blade for your windmill?

the science of windmills

- Betz's Law calculates maximum possible extractable energy from the wind.
- Different types of turbine blades can be created depending on the location of the windmill.

Confidential. For internal distribution only.

guiding questions...brainstorm!

 What do you think are some factors involved in a wind turbine that affect its performance?

 What are some aspects of a blade that may be changed in order to alter the performance of a wind turbine?

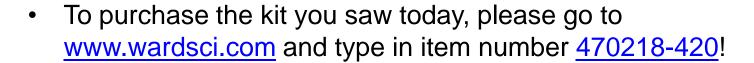
 What are some aspects of the design of a wind turbine that allow it to produce the most electrical energy?

workshop rules

- Construct your windmill structure according to the model provided, then design and construct your turbine blades.
- Turbines can have no fewer than THREE blades; no more than FOUR.
- Blades can only be constructed with the materials provided (manila folders and tape)
- Blades cannot be thicker than one layer of manila folder, no layering.
- Decide the angle at which your turbine will face the wind source, BEFORE COMPETITION!

competition

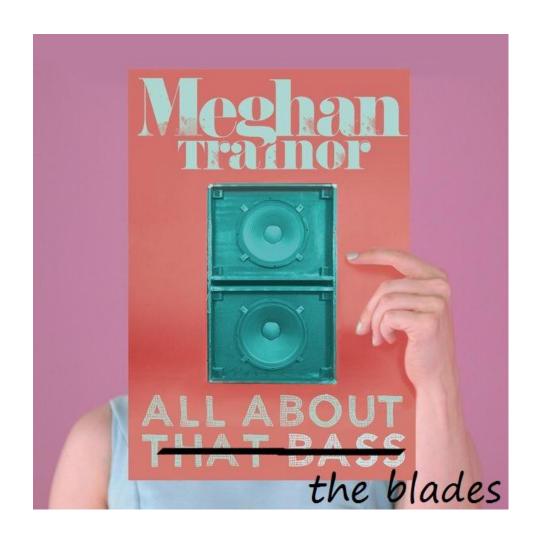
 Once your blades are finished, take your turbine to a competition station and connect your motor to the multimeter. Place your turbine at your desired angle, and measure power output.



contact information

 Would you like a copy of the power point presentation from today? Please email me!
samantha_bonelli@vwr.com

 Please contact <u>sciencehelp@vwr.com</u> with any questions!



thank you!

